

🕪 Get Quote Now

http://aegispower.com/index.php/products/all-products/2-uncategorised/168-goute?product=VME650A

P.O. Box 429, 805 Greenlawn Road, Murphy, NC 28906 Tel: (828) 837-4029 www.aegispower.com

VME650A

VME DC-DC Power Converter Card

(Document Rev A01, 09/19/16)

28Vdc Input 4 Output, 650W Max Combined Output Power

Features Table 1: Maximum Ratings

- 28Vdc per MIL-STD-704A-F * and MIL-STD-1275A/B/D *
- 4 Output Voltages, 650W
- MIL-STD-810F Environmental *
- MIL-STD-461E EMI *
- Dual Slot VME Power Card
- CE Marked (Low Voltage Directive 2006/95/EC)

Parameter	Rating	Unit	Notes
Vin max range	18 to 36	Vdc	
Temperature	-40 to +85	°C	Ambient air temperature
Input power	755	W	@ 650W out (28VDC input)
Combined output power	650	W	See Table 2 for DC output variations

* Designed to meet applicable portions of the standard. Contact Aegis Power for details.

Product Highlights

This dual slot filtered 28Vdc VME650A power card with four outputs at 650W maximum power, is a COTS military power supply solution designed to meet portions of MIL-STD-810F vibration and shock requirements and designed to meet portions of MIL-STD-461E EMI requirements. When compared to VME power supplies using conventional technology, the dual-slot VME650A-001 provides users with higher efficiency (87%), lower weight (4.14 pounds), and higher power (up to 650W). It also has a keyed connector that offers keying options when using multiple power supplies in one chassis. The VME650A is a drop-in replacement for the existing VME550A power card.

<u>AEGIS Power Systems, Inc.</u> specializes in the front end design, development, and manufacture of Rapid Response Custom Switching Power Supplies for defense, industrial, telecommunication, electric powered vehicle and Mil-Cots military power supply applications.

SPECIFICATIONS	(Typical at 25°C, nominal line and 100% load, unless otherwise specified.)
DC input voltage:	Designed to meet MIL-STD-704A-F & MIL-STD-1275A/B/D, continuous operation
	22Vdc to 33Vdc, 28Vdc nominal.
	100Vdc 50msec transient.
DC input line current:	34.4A max @ 22Vdc; 27.0A typical @ 28Vdc input (650W out).
Input power:	640W max @ 550W out, 755W max @ 650W out.
Output power:	650W max. output. (All outputs combined).
Output voltages:	See table 2.
Efficiency:	86% minimum, 87% typical.
Start up time:	500 millisecond maximum.
Voltage set point/ Line/Load regulation:	+/- 2% Vout nominal (for any combination).
Temperature regulation:	+/- 0.01% / °C.
Output ripple:	50mV pk-pk Max. (20 MHz BW) all except; +/-12 Vdc 100mV pk-pk Max.
Current Limit:	Short circuit protected with automatic recovery.
Temperature:	-40°C to +85°C Ambient air temperature 650W.
	–55°C to +100°C Non-operating.
Cooling:	Convection. Customer provided 1200lfm air flow across attached cooling fins.
Package:	Dual slot pluggable slide in rack card.
Dimension:	6U x 8hp x 160mm (see mechanical drawing).
Weight:	4.14 lb. Typical.
Connector:	1ea Positronics PCIH47M400A1 or equivalent (see pin assignments page).
Vibration:	Designed to meet MIL-STD-810F, Method 514.5, Procedure I.
Shock:	Designed to meet MIL-STD-810F, Method 516.5, Procedure I.
Humidity:	0 – 95% non-condensing.
EMI:	Designed to meet MIL-STD-461E (CE101, CE102, and CS101).
Safety Approvals:	CE Mark (Low Voltage Directive 2006/95/EC).

Table 2: Voltage Outputs

	V1	V2	V3	V4
	+5VDC @	+3.3VDC @	+12VDC @	-12VDC @
VME650A-001-XXX	224W	224W	112W	112W
* V1-V4 output power levels indicate maximum power available per output. Total combined power of all outputs on VME650A cannot exceed 650W ** Output voltage variants possible. VME650A can be configured with one to six outputs (one can be negative) (-48VDC to +48VDC) Contact AEGIS sales for details				

-XXX	Custom Options		
-000	No Options		
-001	Conformal coating on PWB		
-002	Metric wedgelocks		
-003	Split inhibit control for V1/V3 and V2/V4		
-004	Connector keyed (position #1)		
-005	Connector keyed (position #2)		
-006	Connector keyed (position #3)		
-007	Conformal coating & Split inhibit for V4		
-008	ESD pin removed		
-009	70k ft. operational altitude		

Table 3: Customer selected options

Figure 1: Transient Immunity

VME650A-001-000 Connector Pin Out Assignment

Positronic Connector P/N PCIH47M400A1 or Equivalent

Pins 1, 2, 3, 4	<mark>+5 Vdc</mark>
Pins 5, 6, 7, 8	+5 V RTN (Common)
Pins 9, 10, 11, 12	+3.3 V RTN (Common)
Pins 13, 14, 15, 16	+3.3 Vdc
<mark>Pin 17</mark>	+12 Vdc
Pin 18	+12 V RTN (Common)
Pin 19	-12 Vdc
Pin 20	-12 V RTN (Common)
Pin 21	NC
Pin 22	POWER OK RTN (Common)
Pins 23, 24, 25, 26	NC
Pins 27, 28, 29	NC
Pin 30	NC
Pin 31	NC
Pin 32	NC
Pins 33, 34, 35, 36	NC
Pins 37, 38	NC
Pin 39	Inhibit (Connect pin to negative input to disable)
Pins 40, 41	NC
Pin 42	Power OK, (Open collector = Fail)
Pins 43, 44	NC

Pin 45	Chassis Ground
Pin 46	Positive Input
Pin 47	Negative Input
Pin 48, 49	(Available for unique keying of supply)

** ALL PINS DESIGNATED NC SHOULD HAVE NO CONNECTION ON THE BACKPLANE

** ALL OUTPUT RTN PINS (COMMON) SHOULD BE TIED TOGETHER ON BACKPLANE

- ** ALL PINS OF THE SAME VOLTAGE SHOULD BE TIED TOGETHER ON THE BACKPLANE (i.e. ALL 4 OF THE +5V PINS SHOULD BE TIED TOGETHER)
- ** TO DISABLE ALL OF THE DC OUTPUTS FROM THIS CARD-CONNECT PIN 39 (INHIBIT) TO PIN 47 (NEGATIVE INPUT). THIS CAN BE ACCOMPLISHED USING A FET, TRANSISTOR, RELAY OR SWITCH THAT CAN SINK AT LEAST 15mA
- ** POWER OK SIGNAL IS AN OPEN-COLLECTOR TRANSISTOR OUTPUT. IT WILL BE LOW WHEN ALL OUTPUT VOLTAGES ARE WITHIN THEIR REGULATION WINDOW – IF ANY VOLTAGE IS INCORRECT POWER OK WILL BE HIGH. THIS OUTPUT IS REFERENCED TO THE COMMON DC OUTPUT RETURN AND CAN BE PULLED UP TO ANY OF THE DC OUTPUT VOLTAGES. SELECT A PULL-UP RESISTOR TO LIMIT THE CURRENT THROUGH THE TRANSISTOR TO LESS THAN 50mA. (Example – use a 1K pull-up for 5mA of current when pulled up to +5V output.)

CONTRACT NO. APPROVALS INTE TRAVN JFS 08/20/07 OFECIED A PROL ENG. THE THE SONTO SONTO THE SONTO SONTO THE SONTO		CAD MAINT INCORPORATE	ZDNE REV COI INITIAL RELEA DO2 UPDATED HEAT DO3 UPDATED TO F E03 UPDATED TO F E04 ADDED SIDE R E05 UPDATED VIDT	
AEGIS POWER S MURPHY, NORTH C VME650A MECH L EGIS P/N: VME65 06ES8 WIGGSON-MOD		AINED. CHANGES SHALL D BY THE DESIGN ACTI	REVISION RECORPTION SEV DO3 PVB REV EO3 PVB AILS TO HEATSINK H TOLERANCE	
SYSTEMS AROLINA LAYOUT 50A-XXX sweet 1 of 1		- BE IVITY,	DATE APPROVED 01/14/09 MVS 11/09/09 MVS 02/10/10 MVS 02/10/11 MVS 04/04/11 MVS 06/18/13 MVS 09/18/14 MVS	
\triangleright	 \cap	τ		-